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An extended lattice Boltzmann (BGK) model is presented for the simulation of
low Mach number flows with significant density changes. For applications to reactive
flows this new model is coupled with a finite-difference scheme for solving the
transport equations of energy and species. With a boundary fitting formulation and
local grid refinement the scheme enables accurate and efficient computations of low
Mach number reactive flows in complex geometry on the simplest Cartesian grids.
Examples of reactive flows around porous burners are presenigshoo Academic Press
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1. INTRODUCTION

The computation of reactive flows requires in many cases methods able to deal with flc
at low Mach numbers but significant density changes caused by heat release in chen
reactions. In general these flows are described by the whole system of Navier—Stc
equations with chemical source terms coupled with the transport equations for spec
This set of equations contains entropy, vorticity, and acoustic modes [1], which in tl
case of low Mach number flows are of very different frequencies. If only steady-sts
flows and flows in the low-frequency limit (with characteristic times one order higher the
characteristic time of acoustic waves propagation) are of interest then a numerical solu
procedure of the whole system of equations for compressible flow becomes non-effici
or does not converge since the resolution of the acoustic fluctuations requires very sr
time steps. To overcome this difficulty the low Mach number approximation (LMNA) o
Navier—Stokes equations was proposed in [2—4] and by others. In this reduced syster
governing equations the acoustic waves are filtered out which allows us to avoid the se\
restriction on the time step.

In absence of temperature gradients the low Mach number approximation of Navie
Stokes equations reduces to the system of Navier—Stokes equations for incompressible
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140 FILIPPOVA AND HANEL

So the methods of solution are usually extensions of methods developed for the solutiol
incompressible flows. Pressure relaxation methods [5] widely used for the computations
slow combustion include the solution of a Poisson equation for the pressure at each t
step, which needs iteration procedures.

Recently a new class of incompressible solvers, the lattice Boltzmann methods [6,
here used with the collision term of the Bhatnagar—-Gross—Krook (BGK) form [8—11], calle
lattice BGK (LBGK) methods, are created on the basis of gas-kinetic representation of flt
flow. These schemes don't deal with the discretized system of Navier—Stokes equations,
describe the evolution of discrete distribution functions in the form of relaxation equatior
Hydrodynamic variables are moments of the discrete distribution functions. It can be sho
that LBGK schemes provide solutions of Navier—Stokes equations forincompressible flo
with second-order accuracy in Knudsen number for flows in the limit of low frequencie!
With improvements as boundary fitting formulation [12], local grid refinement [12], ant
with acceleration in time on refined grids [13] the scheme has become competitive w
well established methods for solving the Navier—Stokes equations.

The ideato extend lattice Boltzmann schemes to the solution of combustion problems
longs to Succet al. [14]. In the limiting case of infinite fast reactions and “cold” flames with
weak heat release the authors have described the reactive flow dynamics in two dimens
with the 24 speeds LBE-FCHC scheme including two passive scalars as mixture fract
of the fuel and temperature. As it was mentioned in [14] the next class of problems to
addressed is reacting flows at low Mach numbers in which density is allowed to responc
temperature changes over a significant dynamical range of values. The first scheme of
kind dealing with the whole system of LMNA equations in the case of simplified chemistr
was proposed by the authors in [15]. It contained the modified LBGK model for solutio
of continuity and momentum equations and a finite-difference method for the transp
equations of temperature and species. With this scheme reactive flows in a wide regiol
Damlgshler numbers were considered.

An improved variant of this scheme is proposed in this paper which simplifies the intr
duction of embedded grids in zones of chemical reactions and makes the whole algorit
more stable and efficient. The modification introduces a new set of moments and additio
terms in the expression for equilibrium distribution function. An interesting aspect of bo
schemes is that the value of the dynamic part of the pressure is not obtained explicitly dur
the computations. It is included together with divergences of velocity and mixture flux |
the value of zero-order moment of distribution functions. To obtain the value of pressu
explicitly one must apply the usual finite-difference technique to this moment.

The locality in the definition of pressure allows the use of different time-stepping in tt
zones of reactions and in zones of pure transport which results in a more efficient resolut
of reactive flows.

The paper is organized as follows. In Section 2 the system of equations of the low Ma
number approximation (LMNA) of the Navier—Stokes equations is repeated for complet
ness. In Section 3 the basic LBGK model for the simulation of incompressible flows
briefly presented. The modified LBGK model for the solution of continuity and momentur
equations of the LMNA is described in Section 4. In Section 5 the algorithm of the con
bined LBGK and finite-difference scheme is presented. In Section 6 the use of the lo
grid refinement (embedded grids) and boundary fitting formulation are discussed in ap
cation to the new LBGK scheme. In Subsection 7.1 the results obtained with the pres
scheme are compared to that of a pressure relaxation method for a common test prob
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In Subsection 7.2 a few numerical examples of steady and unsteady reactive flows
presented.

2. LOW MACH NUMBER APPROXIMATION OF THE
NAVIER-STOKES EQUATIONS (LMNA)

Reactive flows at low speeds are characterized by low Mach numbers but with signific
changes of the density due to temperature changes by chemical reactions. In many case
acoustic influence on reaction problems is not of interest, so the fast acoustic modes,
compared to the convective speed, are filtered out by a low Mach number approximat
(LMNA) of the Navier—Stokes equations of a compressible fluid. The approximations &
counts only for changes at low frequencies with characteristic times in the ortdetJf
whereU is a typical flow velocity.

The LMNA equations are derived from the full set of conservation equations for mas
momentum, energy and mass fractions of species by expanding the normalized varia
(u, p, h)in a series of square Mach numbéts?® « 1 and neglecting terms of second order
in Mach number compared to dominant terms [2—4]. The low Mach number approximati
of Navier—Stokes equations (LMNA) together with the transport equations for the spec
results in the following system of equations,

0t Pmix + o (Pmixle) = 0 1)
2
0t Pl + aﬂ (ﬂmixuﬁua) + Oy p(l) - aﬂﬂ (aﬁ Uy + aauﬂ - éaaﬂayuy) =0 (2)

ap©
PmixCp BT 4+ UgdsT) = 3, Cp X pmixdy T + ,Z hiwi — v omixT ,Z Cpi&Vi + 7; 3

1 wj .
atgi+uﬂa,3gi=p , +—. > &=1 i=1...N (4
mix N
]

Pmix
p(O) = pmixRT = p(O) ®), %)

wherepmix andu are the density and velocity of the mixtuge js dynamic viscosityy is

the coefficient of thermal diffusivity, an@,, is the constant pressure specific heat capacity
of the mixture. In additior;, V; are the mass fraction and diffusion velocityi tif species,

D; is the diffusivity ofith species in the mixtur&,; is the constant pressure specific heat
capacity, andv; andh; are the rate of production and heat of formation ofittiespecies,
respectively.

The pressure splits in two parts: in a thermodynamic pébit) which is constant in
an open system and in a hydrodynamic gatt(t, r) associated with the gas motion. The
fact that the thermodynamic part of the pressure is constant in an open system results ir
following algebraic relationship for a mixture containiNgspecies with different molecular
weightsW,,

N
PmixT @= poTodo, Z
i=1

=

Here and below the reference valygs Ty, ap denote the density, the temperature, and the
molar density of the mixture.
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3. BASIC LATTICE BGK APPROACH

The lattice Boltzmann method [6, 7] and its recent modification, the lattice-BGK (LBGK
[8-11] method, provide kinetic concepts for simulating incompressible, continuum flow
described by the Navier—Stokes equations. The “isothermal” LBGK models are mostly us
forincompressible flows and will be explained briefly as the basis for the solution of LMN,
equations.

The computational method is based on the development of discrete molecular vel
ity distribution functionsf,; on uniform Cartesian lattices with additional diagonal links
(8, 9],

fpi(t + 8t 1 4+ Cpidy) = frit. 1) + o flt. 1) — fict.n)]. (6)

The indexi defines the vector of the discrete molecular velocities and the ipdexhe
square modulus of the corresponding molecular velociy[8]. The most commonly
used LBGK model in 2D deals with 9 discrete molecular velocities with componen
(€0, 0), (Co. Co), (0, Co), (—Co, Co), (—Co, 0), (—Co, —Co), (0, —Cp), (Co, —Co), and (0, 0). The
equilibrium distribution functionf;q is a discrete analog of the Maxwellian distribution
function expanded for small Mach numbers [8, 9]. For incompressible flows with a dens;
po = 1 one can take it in the form [10, 11]

p uacpia uauﬁ Cpiacpiﬂ
fol=1tp + + : —8ap | | (7)
P poC2 c? 2c2 c2

where thet, are weighting coefficients, is the lattice spacingy = 8x/4; is the Cartesian
component of molecular velocity for moving molecules, @gad= co/+/3 is the speed of
sound in this molecular system.

The macroscopic flow variables are computed on each node as moments of the disc
distribution functions

p=poC§Z fpis u =Z fpiCpi. 8)
p.i p.i

The two essential parameters of the LBGK method are the Knudsen nunaret the
global Mach numbeMy. Both are values much less than one. The Knudsen number of tf
systenme = é4/L is defined as the ratio between lattice spadingnd characteristic length
of the flowL. The characteristic length is defined as the characteristic distance on which
hydrodynamic variables are essentially changing, as, for example, over the thickness
boundary layer. The geometrical length, typically a body length, is desigrieg bsnearly
isotropic flows the characteristic lengthlis~ Lo, butin cases of strongly anisotropic flows
where zones are resolved on grids with different lattice spacings one has to differ betw
L andLg [13]. The Mach number is introduced as the global Mach nunige= Uo/co
which s the ratio of a characteristic velocltly of the flow and the molecular speegbn the
lattice. The derivation of the macrodynamical equations from the LBGK equations usil
multi-scales asymptotics is described in detail in [11, 16]. This derivation is essential
based on Chapman—Enskog and Taylor expansions in two different characteristic tin
of the flow, the characteristic time of acoustic waves propagdflon~ ¢~15;), and the
characteristic time of low frequency hydrodynamid@ ~ €~25;). Using expansion of
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the distribution function around the local equilibrium state in a series of small parame!
8t = eL /cp and the symmetry properties of the lattice one can obtain the following syste
of macrodynamical equations [11],

ap
O0Uy, =0 9
pocgat + ©
AUy 3
po| =i+ Usdpla ) = —03Pdup + 1t AU + O(Mg). (10)

The resulting kinematic viscosity = /o is related to the relaxation parametgby the
formulation [11]

b= ‘SXGCO (3 - 1). (11)

w

When acoustic time scales exist in the solution the scheme can be considered as a “w
compressible” isothermal solver according to macrodynamical equations Eqgs. (9)—(1
However, if the external conditions are uniform in time then acoustic fluctuations usua
introduced in the LBGK scheme by initial conditions dissipate relatively fast. Then tf
resulting flow field is governed by the low frequency solution with a characteristic time «
T~ (Mge)‘l&. The characteristic tim& corresponds to a range of Strouhal numbers of

L )
Str= —2 — !
UoT T Mge

~0()

and is consistent with the range obtained experimentally, e.g., for vortex streets. This
haviour was confirmed by the large amount of numerical experiments [12, 16, 17]. Bas
on this experience the analysis for deriving the macroscopic equations from the LBC
approach can be simplified if only characteristic time scales of drdae of interest. The
analysis performs in a similar way using Chapman—Enskog and Taylor expansions but v
respect to one time scale only. It was shown in [13] that the macrodynamical equatic
derived with the one-scale approach approximate the Navier—Stokes equations for inc
pressible flow with second order accura@ye?), if Mach number and Knudsen number
are of the same order of magnitudéy ~ ¢.

In the following discussion of LBGK methods for the LMNA equations the resulting
macrodynamics is considered in the limit of low frequendgigs- (Mge)—lat) only. The
transitional regime from the start of computations up to obtaining the low frequency lirr
is not analyzed.

4. LATTICE BGK APPROACH FOR FLOWS WITH VARIABLE DENSITY (LMNA)

The system of continuity equation, Eq. (1), and momentum equation, Eq. (2), of t
LMNA has similar properties as the corresponding equations for incompressible flov
The pressurg@® acts like a parameter to satisfy the continuity equation. In usual Naviet
Stokes solvers the pressure is calculated iteratively from a Poisson equation derived f
the divergence of the momentum equations. In LBGK methods forincompressible flows
pressure-velocity coupling is included in the relaxation procedure of the distribution fun
tion and acts macroscopically like a weak-compressible solver. Effects of compressibil
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become negligible in low-frequency limit and the LBGK scheme performs macroscopical
as anincompressible solver with second order accuracy in Knudsen number. Thusthe LB
concept for incompressible flow [10, 11] can be transferred to the LMNA equations. A
essential difference between both is the variable depsgit(T, a). But, if the energy and
species equations are considered to be decoupled during a time step, the density bec
an external quantity as a function of temperature and molar density of the mixture in t
system of continuity and momentum equations.

In consequence, the LBGK approach for incompressible flows can be used for the sys
of continuity equation, Eqg. (1), and momentum equation, Eq. (2) of LMNA equations b
with suited modifications to take into account the temporal and spatial variation of dens
omix(T) and to ensure the same numerical accuracy.

The modifications of the lattice BGK method for low Mach number flows with variable
density are described in the following.

For links with finite molecular velocitiesp( # 0) the rate equation for the distribution
function is unchanged,

fpi(t + 8.1+ Cpidy) = it 1) + o[ flt, 1) — frit, 0], p#£0. (12)
For resting molecules(= 0) it is

folt + 6, 1) = fo(t,1) + w[fg (t, 1) — fo(t,1)] — G(t,r), p=0. (13)
The additional factos models the temporal change of the dengity(t, r)

Pmix(t, 1) . Pmix(t — 8¢, 1)
Lo Lo '

G, rn =

For the computations of steady-state problems the &¢mr) in Eq. (13) can be omitted.
The equilibrium distribution functiorf ' is changed in the following way:

fsiq(t, r) — tﬁ[) P(t;r) + pmix(ta r)u(;(ts r)Cpirx
pol C§ Cs
+ Pmix(t, NUg (t, NUg(t, ) ( CpiaCpig s
2c2 c2 b
S S
t, ru, (t, r)ds omix(t, r) / Cpiy Cpi
+ v(t, ru, (t, r)ds omix(t, 1) piy Cpis —5,)]. (14)
c ct

The new formulation of the effective equilibrium distribution function takes into accour
the variable density and changes the meaning of the moments.
The zeroth moment results in a pressure-like t&m

2
P(t,r) = pocgz foi(t, 1) = p® + §/L8yuy + 13, Pmixly - (15)
p.i

The termP, containing macroscopically the dynamic part of pressiteand the diver-
gences of the velocity and the mixture flux, is defined to correct the expression for the str
tensor to its physical definition in the macrodynamical momentum equations. Its derivati
is given in the Appendix.
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The first moment of the discrete distribution function represents the flux of the mixtur

Pmixl = poz fpiCpi (16)
p.i

instead of the velocity of the mixture as it was proposed in the previous LBGK model [1£
The kinematic viscosity takes into account the variable dengify, and is connected with
the relaxation parameter by

T T 1) 2
sk pw@ o xCo(__l) 17)
Pmix o Todo 6 \o

The reference viscosityo = u(T = Tp) is directly related to the Reynolds numbReby

Re— 2P0 (18)
Ho

Notice that the relaxation parametgrin Eq. (12) and Eq. (13) is now a field variable
depending on the temperature and molar density of the mixture even if the dynamic visco
does not depend on the temperature.

An analytical proof of consistency of the macrodynamical equations provided by th
modified LBGK approach with the continuity and momentum equations of LMNA an
estimation of the accuracy is given in the Appendix.

It is shown there that the macrodynamical equations provided by the LBGK scher
approximate the continuity and momentum equations Eq. (1) and Eq. (2) of the LMN
of the Navier—Stokes equations beside the truncated terms of the Oxdidge) of the
dominant terms. IMq is chosen in the same ordergs.e., Mg ~ € < 1, the solution of the
continuity and momentum equations of the LMNA is approximated by the solution obtain
with the LBGK model with second order accuracy in the Knudsen numbesy /L.

5. NUMERICAL SCHEME

The numerical algorithm is based on a coupled procedure between the solution of
LBGK method for the flow part and a finite difference solution for the transport equatior
for temperature and species.

If at a timet all macroscopic variables and the values of distribution functinsre
assumed to be known then the modified lattice-BGK equations Egs. (12)—(13) can be sol
for each linki

fpi(t 480 1 4+ cpidy) = fit. ) + o[t — fut.n],  p#0

and for zero molecular velocitg = 0

Pmix(t, 1) + Pmix(t — 8¢, 1) .

fo(t + 8, 1) = fo(t, 1) + o[ fo(t, 1) — fo(t, )] —
Po Po

On the new time-level + 5t the fluxesomixu and the functiorP which includes dynamic
pressure and divergences of velocity and flux of the mixture are obtained as moment
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the distribution functions

2
P(t+8,1) = poc2) _ foi(t+6,1) = PP + Z1ud, Uy + v, pmixty
p.i

PixI(t + 8e,1) = poy_ Fpi(t + 8, 1)Cpi.
p.i

We mention here that although the values of all hydrodynamic variables included in t
expression for the zeroth moment of the distribution function do not have to be defin
explicitly in the internal points of the computational domain, they have to be evaluated
the boundaries.

The convective-diffusion equations for the temperaftirand the species in an open
system (written here in variablgg,,u with assumption of the sant,; for all species)

aT (omixU) aT aT
AT + L gT = 3, Coxpomidy T+ =——— > hiw
t ao Topo CpaoTopo © P CpaoTopo 4 Y
aT (omixl) aT aT .
o0& + —————v& = —— 0, Di pmix0, & + ——wi, i=1...,N—-1
k& + 20Topo Véi 20 Top0 v Di pmixdy & + 20Too Wi

can be integrated by any finite-difference scheme. In the computational examples prese

below an explicit Euler scheme is used. Within the levelsdt + §; the values of fluxes are

linear interpolated from the time levelandt + é;. Then at time + §; the values of function

at+4,r) = ZiN:l(gi (t + &, r)/W), the relaxation parameter T (t +38;, r), at+6, r)),

and the density of the mixtugg,ix(t+6¢, r) = poToao/(T (t + &, r)a(t + &, r)) are known.
The value of the effective equilibrium distribution function is completed by

tp

P+ 6,r ix(t 4+ 8¢, Nuy (t + &, ICpig
f:iq(t+5t,r)=p—< ( t )+)0m|x( ts ) Uq ( t, I)Cpi
0

2 2
CS CS

+pmix(t+8t,r)ua(t+8t,r)uﬁ(t+5t,r)(cpmcpi,s 5 )
— bup

2c2 c2
v(t + 8¢, MUy, (t + 8, 1)9s omix(t + 8¢, 1) [ Cpiy Cpis
+ 2 2 3y s .
S S

For reasons of stability the last term in the expression for the effective equilibrium disti
bution function is reformulated using the relatiofixT a = pgToao,

top (t + 3¢, 1) pmix(t + 8, MU, (t+ 8, r)dsalt + &, T + 6, 1) <Cpiycpi6 5 )
— — 5,5 ).
680 ToC2 c ’
The procedure is repeated on the new time-lévelt + &;.
As one can see from this numerical algorithm the explicit expression for dynamic pressi

p in the internal points of the computational domain is not necessary for the computati
of all other variables.

6. LOCAL GRID REFINEMENT AND BOUNDARY FITTING FORMULATION

The computation of low Mach number combustion in a wide region of Reynolds ar
Damlghler numbers requires the resolution of high anisotropic parts of the flow as bound:



A NOVEL LATTICE BGK APPROACH 147

layers or zones of chemical reactions. The use of an uniform, fine mesh results in
unnecessary high computational effort, which can be essentially reduced by refining loc:
only those zones where high resolution is required. For this purpose a local second-o
grid refinement concept for LBGK models using embedded grids was proposed recently
the authors [12].

Beside the spatial refinement with factors: 8y coarse/ 8x.ine = O(10) the refinement pro-
cedure allows us to use different time steps on different grids which is especially import:
for combustion problems if fast reactions are considered because this kind of spatial .
temporal refinement reduces the stiffness of source terms in the equations for tempere
and species and enables us to solve them on the same Cartesian grid as LBGK equatic
the simplest explicit manner.

The boundary fitting formulation [12] was proposed by the authors for the basic LBG
scheme for incompressible flows. They allow us to describe Dirichlet boundary conditio
for velocity on arbitrary curvilinear surfaces lying between the nodes of a Cartesian gr
The boundary fitting concept can be used in the present modified LBGK model in a sligh
changed form. The changes are caused by the changed form of the equilibrium distribu
function and by the dependence of the relaxation parameterthe temperature.

A curved boundary lying between the nodes of the uniform lattice with additional dia
onal links is sketched in Fig. 1. If the values of the mixture fh$u9 on the boundary
are known (wherg2. u9 # 0 for porous boundaries) then the distribution function com-
ing to the “fluid” noder ¢ from the “rigid” onery, lying inside of the body is prescribed

by
fpi(t +680.11) = [L— o, r0)) fuit,re) + ot ro) ikt ro]d—w)

c2

eq eq pr%ixugcpia
+a10)i fpi (t,rb)+a2(,()i fpi (tvrf)_th p ’ (19)
0%s

wherew; is an adjusting parametesi(t, r ;) is the relaxation parameter in the “fluid” node
'+, Cpi, = —Cpi, and the coefficients; anda, satisfya; - a, =0 anda? + a3 = 1. The

b
S N
o -\
“fuid’’ nodes g
. \\ d
e r, // boundary of the body
. i ﬁx a \‘...
T_?“_sﬁ\ \ g &
p !-; s .
Ady I\\\\ Prix Ug / :
|
/ AV ARyY %
Ny i
@ N

FIG.1. Computational mesh and geometrical relations for fitting of the curvilinear boundary.
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“equilibrium distribution function” in the “rigid” nodes‘peiq(t, rp) is defined as

t P, r ix(t, rp)Uq (t, o) Cpig
fsiq(t»rb) _ _p( ( . £) 4 Pmix(t, I'p) 2( b)Cpi
cZ c2

+

Pmix(tsrf)ua(t,rf)uﬁ(tarf)<Cpiacpiﬁ 5 )
— Sup

2c2 c2
t,re)u, (t,r)o, ix(t, 1 Cpiy Cpi
N v(t, reu,( ;) 5 Omix( f)( plyzpls —5;/3)), (20)
CS CS

wherepmix(t, rp)u(t, rp) is the linear extrapolated value pf,ixu from the node ¢ through
the known value on the boundary

A-1 o U9
Pmix(t,rf)u(tyrf)-i‘m%.

Pmix(t, rput, rp) =

HereAdy is the Cartesian component of the distance from the netiethe boundary along
the linki. The projection of flum%ixugcpi(, is taken in the crossing point of the boundary
and the linki.

After a Taylor expansion of Eq. (19) and an expansion of the distribution function arout
the local equilibrium state one obtains the same relationships betwemmdw (t, r ;) as
in the case of incompressible flows [12]. For reasons of stability the following combinatic
of boundary fitting conditions has to be used in Eq. (19):

wi =ow,ri) A -1), aa=1 a=0 A>05 (22)
2A -1)

_ =0, =1 A <O05. 22
A-otry o % = 22)

wi =owt,r)

One has to emphasize that these simple algebraic formulas are obtained as in [12] for
case of low frequency flows with characteristic tinfes- (Mqe) ~15; after sorting terms in
the LBGK equation in the order of Knudsen numbeand equating the coefficient of the
dominant term to zero. Neglecting of high-ordeeiterms in the expansion series results in
indistinct position of the curvilinear boundary described with the boundary fitting formula:
Itis lying “somewhere” in the shell with thickness<é, around the geometrical boundary.
Nevertheless this boundary formulation is consistent with second order accuracy ofthe in
scheme as also estimations with Richardson’s formula in [13] have confirmed. Accordi
to our experience the LBGK schemes with this kind of boundary formulation were alwa
stable in simulation of flows around the isolated complex curvilinear geometry as cylinde
airfoils [13], grids of crossing wires with deposited particles (spheres) [18], and othersiif tl
resolution in boundary layer was reasonalle-(.1). However, in regions of connection
with boundaries described with different kind of boundary conditions as, for example, tl
edges of the inlet or outlet of a channel, the LBGK scheme can become unstable [19, :
To our experience, this instability depends on the common discretization of the bound
conditions at the edges [21] and can be avoided by an appropriate formulation.

In the following, the boundary fitting formulas are applied to isolated curvilinear bounc
aries as the boundaries of the porous burners in the reactive flow.
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7. NUMERICAL RESULTS

7.1. Validation of the LBGK method for reactive flow#lthough several numerical
approaches have been employed for the simulation of low speed reacting flows [22-25
to now there are no sufficiently complex benchmark computations available for analysis ¢
validation of different codes [23]. The quasi-two-dimensional benchmark problem recen
proposed by Tomboulidest al. [23, 24] is very suitable for analyzing splitting errors in
methods based on straight discretization of Navier—Stokes equations but it is not dire
applicable to the lattice Boltzmann solver.

For these reasons the new scheme is validated on results obtained for a common
problem solved by a finite difference pressure relaxation method in our numerical grou

In all computational examples presented below molecular weights of all species
assumed to be the same and reference valuag pf, Tp are taken as units, which results
ina = 1 andpmixT = 1. Results of computations taking into account different molecula
weights of species are given in [26].

The finite difference method used for comparison is based on a pressure relaxa
method. The discretization is performed on a Cartesian, non-staggered mesh with sec
order upwind schemes for the convective terms and central differences for the diffus
and pressure terms. The Poisson equation of pressure is solved with an overrelaxed Ge
Seidel iteration scheme. The time integration is performed with an explicit, multi-steppit
Runge—Kutta scheme, while in each time step a fractional step method [5] is used to sc
the system, which proceeds in 3 steps:

(Stepd U = u; — AtRes, (U", p")
g =£" — AtRes(u", T", p", £")
-|-n+1 — Tn — At Rea_ (un’ Tn, pn’ gn)

1 1
(Step 2 9, <pn+1 ey p(l)) = Eaa (udtt —uy)

(Step 3 Ul =u — Atd, p?.

The common model problem describes the flow of a hot oxidizer around a periodical g
of porous burners, through which cold fuel is injected into the flow. The temperature of t
oxidizer at the entrance is assumed twice the temperature of the injected fuel. The Reyn
number of the flow ifRe= 80 related to the velocity of the oxidizer at the entrance, to the
diameter of the burner, and to the viscosity in the vicinity of the burner.

In Fig. 2 the field of temperature and streamlines around the burners are shown at
for the non-reactive case with temperature changes. The velocity of injected fuel is eq
to one percent of the velocity of the oxidizer at the entrance. Figure 2a presents the re
obtained from the pressure relaxation method; Fig. 2b shows the results calculated with
LBGK method. The results are in very close agreement.

A reactive flow case is presented in Fig. 3 for the same geometry, but with a higher veloc
of injection of 10% of the velocity of the oxidizer at the entrance. Figure 3a presents t
field of temperature and streamlines of the mixture computed with the pressure relaxat
method and Fig. 3b shows the corresponding values obtained with the LBGK method.
lowest and highest values of the temperature are shown in brackets.
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prum—

150

FIG. 2. Streamlines and temperature of the flow through periodical grid of porous burners=e8®Rmo
reactions), computed with the pressure relaxation method (a) and LBGK method (b). Velocity of injection is eq
to 1% of velocity of the oxidizer at the entrance.

50 150

FIG.3. Streamlines and temperature of the flow through periodical grid of porous burners-@WRene-step
global reaction), computed with the pressure relaxation method (a) and LBGK method (b). Velocity of injecti
is equal to 10% of velocity of the oxidizer at the entrance.
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The reaction is described by an one-step global reaction in the form
a Fuel+ B Oxidizer — Product

with « =n/(n + 1)=1—-p and n=10. The production rate is given by,/pmix=
&r - &0 -exp(—Ta/T) - Da, where the parameters arg = 12 andDa = 620. The heat pro-
duction rate is assumed to be ¢/ pmix. The additional parameters of these computation:s
arePr=0.7148 Sc=1, andu ~ +/T. The lowest and highest values of the temperature fo
the both solutions are shown in brackets. The solution of the flow with the LBGK methc
requires 80% of CPU time necessary for the pressure relaxation method.

The agreement between the solutions obtained with the different numerical schemes
found to be excellent.

7.2. Numerical examplesA number of computational examples for reactive flows
are performed with the LBGK method to demonstrate the capability of the method
deal with flows at relatively high Reynolds and Dashkér numbers. The use of refined,
embedded grids is found to be absolutely necessary for such kind of anisotropic fl
cases.

The flow of hot oxidizer through the periodical grid of porous burners is considere
again. From the surfaces of the burners diffusional mass flux of the cold fuel is assum
The chemistry is described with an one-step global reaction different from that above

Fuel+ Oxidizer — 2Product

with the production ratep/pmix = T&r - o - €xp(—Ta/T) - Da, where the parameters are
Ta = 12 and heat production rate i&4/ omix. The other parameters éPe=0.7148 Sc=1,
w~ ~/T. The Damlohler number defined as the ratio between the time of convection withi
one coarse cell and the characteristic time of chemical reaction is 1000. If the charac
istic time of convection is related to the diameter of the cylinder then it corresponds
Da = 15000.

An embedded grid with refinementis applied around the burner to resolve accurately
boundary layers and thin zones of reaction. At first the €&se 100, n = 3 is considered.
Velocity at the entrance iden; = 0.07cy and the relaxation parameters on the coarse an
fine grids afT = 1 arew. = 1.881 ws = 1.682 accordingly.

In Fig. 4 the picture of steady-state flow in the periodical celRat=100 n=3 is
represented. Figure 4a shows the basic numerical mesh and embedded grid aroun
burner. In Figs. 4b and 4c the isolines of temperature and mass fraction of the product
plotted. Maximal values aréyax= 3.01, £&p max=0.98.

In Fig. 5 an enlarged part of the same flow in the vicinity of the burner is showr
Streamlines and temperature field are given in Fig. 5a, and the reaction rate in Fig.
Recirculation zones behind the burners exist for these Reynolds anddb@mkumbers.
Reaction occurs in the thin layer surrounding the burner, mainly in the front part of t
burner. The strong anisotropy of the flow and the necessity of the use of embedded g
becomes clear from Fig. 5.

In Figs. 6 and 7 the flow of the same components through the same geometry is shc
but with higherRenumberRe= 300. An embedded grid with parameter of refinement 6 is
applied around the burner. Velocity at the entran¢&js= 0.1co and relaxation parameters
on the coarse and fine gridsi= 1 arew; = 1.942 andw ¢ = 1.695 accordingly.
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1.00 1.11 1.21 1.32 1.42 1,53 1.63 1.74 1.84 1.95 2.05 2.16 2.26 2.37 2.47 2.55 2.68 2.79 2.89 3.00

0.00 0.05 0.11 0.16 0.21 0.26 0.32 0.37 0.42 0.47 0.53 0.58 0.63 0.68 0.74 0.79 0.84 0.89 0.95 1.00

FIG. 4. Flow of the hot oxidizer through periodical grid of porous burners at=R€0 (one-step global
reaction). (a) Basic coarse grid and embedded @rid= 3) around the porous burner; (b) temperature field,;
(c) mass fraction of the product.

a (1,3.01) b (0,5.71)

20 30 40 50

—T 0

FIG. 5. Part of the flow of the hot oxidizer through periodical grid of porous burners at K& on the
embedded gridh = 3. (a) Temperature field and streamlines; (b) reaction rate.
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a
100 200
T | [
1.00 111122133144 155 166 1.77 1.88 199 211 222 233 2.44 255 266 2.77 2.88 2.99 3.10
b
100 = 200
[ N [
0.00 0.05 0.11 0.16 0.21 0.26 0.32 0.37 0.42 0.47 0.53 0.58 0.63 0.68 0.74 0.79 0.B4 0.B2 0.95 1.00
c

100 200

FIG. 6. Flow of the hot oxidizer through periodical grid of porous burners at=R€0 (one-step global
reaction). (a) Basic coarse grid and embedded @rid= 6) around the porous burner; (b) temperature field;
(c) mass fraction of the product.

a (1, 3.07) b (0, 6.04)

FIG. 7. Part of the flow of the hot oxidizer through periodical grid of porous burners at 80 on the
embedded gridy = 6. (a) Temperature field and streamlines; (b) reaction rate.



154 FILIPPOVA AND HANEL

e [ [

-3.00 -2.68 -2.37 -2.05 -1.74 -1.42 -1.11 -0.79 -0.47 -0.16 0.16 047 0.79 1.11 142 174 205 237 268 3.00

40 b
30 |
20 F

10 |

X

FIG. 8. Flow of the hot oxidizer through periodical grid of porous burners at=R€0 (one-step global
reaction). Instantaneous isolines of vorticity in the vicinity of the burner.

As itcould be supposed in this case a time-periodic vortex street appears. Figure 6a sh
the basic numerical mesh and embedded @rie= 6) around the burner. In Figs. 6b and
6¢ the isolines of temperature and mass fraction of the product are plotted. In Fig. 7
enlarged part of the same flow in the vicinity of the burner is shown. Streamlines al
temperature field are given in Fig. 7a, and the reaction rate in Fig. 7b. As one can ¢
from Fig. 6 the typical for vortex streets field of passive scalars as temperature and m
fraction of product outside of the zone of reaction appeared. The zone of reaction is
vided in two parts: the stable one in which mainly reactions occur in the front part of tf
burner and the slightly oscillating one behind the burner in the region where vortices
induced.

To show the quality of this relatively sharp grid refinement instantaneous isolines
vorticity crossing the interface between two grid are presented in Fig. 8.

In Fig. 9 the oscillations of temperature and streamwise component of the mixture fl
versus time are shown in the center point of the computational domain to justify once me
our basic statement that on the late stage of computations with LBGK scheme the acou
part of the solution is filtered out.

Here some important properties of the local grid refinement concept have to be poin
out. Consider some hypothetical uniform fine grid (FG) covering the whole computation
domain and providing the same resolution in the zones where it is necessary as the embe
grid used in the previous simulations (Figs. 4, 5). The number of grid nodes used in t
numerical simulation with embedded grid is equal to 16% of the number of grid nod
of FG, whereas the number of operation in the LBGK scheme for the same physical tir
interval on the uniform grid FG would be about 11 times larger. This win in the simulation
using embedded grids is achieved due to the different time stepping in the zones of fine
coarse grids. Here one must also mention that this property was not used in the compar
of the performance with the pressure relaxation method as far as in both methods the f
was solved on the uniform Cartesian grids.

The next problemsto be addressed in the future are the implementation of a detailed ch
istry mechanism in the solver and the consideration of three-dimensional problems. 1
splitting of the numerical scheme into two parts, the LBGK part and the convective-diffusic
part, allows us to increase easily the number of transport equations for species. Simple
tension to three dimensions is one of the well-known advantages of LBGK modelling.
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FIG. 9. Flow of the hot oxidizer through periodical grid of porous burners at=R@0 (one-step global
reaction). Oscillations of the temperature and streamwise mixture flux in the centre point of the computatic
domain.

8. CONCLUSION

The LBGK model, originally developed for simulating incompressible flows, was ex
tended to flows at low Mach numbers, but variable densities. Algorithmic extensions, li
local grid refinement and boundary fitting formulation, were adopted from previous studi
to the new method. Analysis and numerical studies confirmed an accuracy of second o
in space and time with respect to the lattice Knudsen number. The method preserves the
vantages of the lattice BGK concept, as they are easy parallelization and flexible treatn
of complex geometries, and results therefore in an accurate and efficient solution conc
of low Mach number flows with variable density caused by temperature changes duetot
transfer or chemical reactions.

In the present paper a coupled solution procedure is presented, where the LBGK met
for the flow computation is coupled with a finite-difference method for calculating tempe
ature and species of a chemical reacting flow. The flows around porous burners were ch
for validating and testing the new scheme. Comparisons with the solutions obtained w
a pressure-relaxation scheme for low Mach number approximation of the Navier—Stol
equations have shown the excellent agreement. Further studies of reactive flows in a v
regions of Reynolds and Darokler numbers are presented.

APPENDIX

Analysis of the LBGK Method for LMNA

The proof of consistency and estimation of accuracy of the LBGK method for the solutic
of LMNA is based on a consideration of orders of magnitude in the two parameters, t
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lattice Knudsen number, and the global Mach numbéfg

5x CO(S'[ UO
=—-—=—x1 and Mg=— <« 1
Ce < s <
In the frame of molecular level, on which the LBGK method is numerically solved, thi
following non-dimensional variables relatedgpandL are introduced:
X t _ Cpi Cs 1 — Sx

_ _ _ s
X=—, t=——, Chi=—, CG=— = —, 8:—:8
L L/ce ™ o 0 /3 L T L/

The macroscopic variables are related to the following reference quantities:

=e€. (23)

— Pmx = T _— a _ u — P _ v
prix=" T a=2 U=—, P=——, v=—. (24
™ po To a0 Co P0G oL @Y

In the following the bar-superscripts are skipped for simplicity. The modified LBGK eque
tion, Egs. (12) and (13), reads in non-dimensional form

foi(t +e.1 +cpie) = it 1) + o[t 1) — frit. 1] — Gt ). (25)
The functionG(t, r) is defined as
G, r) = pmix(t, r) — pmix(t — €, 1) if p=0andG(t,r) =0 ifp#£0.

The effective equilibrium distribution function, Eq. (14), reads in non-dimensional variable

P pmixUaCpic , PmixUaUp [ CpiaCpis
f80—t + -4
pi = P {cg c2 2c2 c2 o

U,, 35 Pmix { Cpiy Cpi
n % yczpm|x< plz2 pis _8y8>:| (26)
S S

with the definition of the dimensionless kinematic viscosity

u=%<§—1>. 27)

Under the assumption of continuous physical sgace in the limit ofe — 0, the LBGK
equation Eq. (25) is expanded in Taylor series with respect to gmall

9 P €279 9 12 eq 3
at +Cp|a axa fpi + = 2 at +Cp|a a)(a fpi +(1)[fpi - fpl} = O(E ) (28)

and correspondingly the functida(t, r),
1, 3
G(t, r) = €dpmix(t, 1) — € 9t e pmix(t, 1) 4+ O(€”).

The non-equilibrium distribution function is expanded for small deviations from the loce
equilibrium in the sense of a Chapman—Enskog expansion to

foi = T+ ef il (29)
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The moments of the perturbation functidlé\l) satisfy
dofd=0 > filcha=0. (30)
p.i p.i

Introduction of the expansion Eq. (29) into the Taylor series Eg. (28) and sorting in orde
of e result in an expression for the perturbation funct@ﬁ,

af i, r) af i, r)
faltr) =— w( m o Cpia | + O(ef it €fpix €fpinx)-  (31)

Summation over all discrete velocities in series Eq. (28) with Eq. (29) and Eq. (31) yiel
the equation of the zeroth moment

1
%> foi+0p Z fpiCpip + ~€ <atat Z foi -+ 2049 Z fpiCpip + 950, Z fo cp.,gcp.y>

p, i

1
=+ 0t Pmix — ééatatpmix: 0(62)

and of the first moments by multiplying witt,

1
at Z prCpIa + aﬂ Z fp| Cplacplﬁ + 26 (atat Z fp| pr: + Zataﬁ Z fp| Cplacp|ﬂ
p.i p.i p.i

2
+ 3 <1_ ) Z o Cplacplﬁcply> = O(e?).
Using symmetry properties of the lattice
thcpia =0, thcpiacpiﬂcpiy =0, thcpiacpiﬂcpiycpiscpié =0
i

p.i p.i

> toCpiaCpip = C28up: > toCpiaCpisCpiyCpis = Ca (Buplys + Sy Sps + Susdpy)
p.i p.i

and the expression for effective equilibrium distribution function Eq. (26) one can obta
the following macrodynamical equations

at(pmix + P/Cg) + aapmixua
1
+5€ (000 (P = pe?) /€2 + 2000 pmixhe + 0 (Prixals + PBag)) = O(€?)  (32)
atpmixua + aﬁ (,Omi)(u()(Uﬁ + PSO(,B)
= 0V (B Pmixte + o PmixUp + Sapdy Pmixty, — Uy 35 pmix(Say 85 + Sasdpy))

1 1
€ (éatatpmixua + (1 — ;) 8taﬁ(,omix UsUg + Paaﬁ)) + 0(62)- (33)

The terms on the right hand side, containing the viscasityo not agree with the correct
stress terms of the Navier—Stokes equations. However, the furetistill undefined, can
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be used to cancel out the wrong terms included in Eq. (33). Comparing the terms of z
order with the required physical stress term, the funcBdmas to be defined as

2
P = p(l) + é%ayuy + 19, Pmixty =C§Z fpi' (34)
p.i

The functionP, Eq. (34), is defined now as a function of the dynamic prespthend the
divergences of the velocity and of the mixture flux. This definition is similar to the redefin
tion of pressure in turbulent modelling where the isotropic part of the stress tensor is ad
to the value of the dynamic pressure. Although in the internal points of the computatior
domain different terms included in functidhdo not have to be defined explicitly, all terms
in P have to be introduced by discretizations at the boundaries of computational domai

Using the definition oP the firstmoment Eq. (33) corresponds to the momentum equatio
in the form

8tIOmiXua( + 8/.‘5 (,Omixua uﬂ + p(l)(saﬂ)

2
= aﬂ vpmix<8,3uo, + Bau,g — ééaﬁayuy>

+e€ (;Btat,omixua + (1 — i)ataﬁ(pmixuauﬁ + P&m)) + 0(62). (35)
The system of equations Eq. (32) with Eq. (34) and Eq. (35) corresponds to the contint
equation and the momentum equations of the LMNA of the Navier—Stokes equations bes
the time derivative oP in the continuity equation and the terms proportionat fo both
equations.

These additional terms become on the order of the truncation error in the low frequer
limit. As it was mentioned in Section 3, acoustic components of the solution dissipate
the transitional stage of computations relatively fast if no high frequency disturbances
generated by boundary conditions. After this dissipation the time advance of the LBC
scheme reproduces the low frequency solution only, which corresponds to Strouhal numt
of Str=1Lo/UgT =8;/T Mge ~ O(1). This time behaviour is typical for laminar vortical
flows, as, e.g., for von Karman vortex streets, and was checked by computations.

For the proof of consistency of macrodynamical equations provided by the LBGK scher
the system of equations Eg. (32) and Eq. (35) in molecular scales is transformed to
characteristic scales of the low frequency solutions.

For re-normalizing the dimensionless variables, given in molecular scales Eq. (23) &
Eq. (24) to the scales of the low frequency flows, new reference quarhtitids, 1o, po are
introduced. The Mach numbédy = Up/cy « 1 appears then as an additional paramete
of magnitude.

The relationship between the dimensionless quantities in Eq. (23) and Eq. (24) (w
bar-superscript) and the new dimensionless quantities (with tilde-superscript) is given

X _ _ ~ 1 t —
R=2 =X S%=X=e fo=-=— " —i{MStr
L ¢ T~ Lo/(USt 9
. = i _ u u

5F = 6TMgStr= eMgStt  fmix = 2™ = e li= — =

00 Uo M7g’
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1 1 )
..(1)= p()zi)’ |5= P P 5 Vv =_Re

V2 = v V—-.
POUO Mg o/ Po Mg

Using these transformations with the definition of the Reynolds nufbet poUgL /1o
and the time derivativéy = dr/(MgStr the following equations can be deduced from
Eqg. (32) and Eq. (35),

St fmix + O Armixtla + SUMGP /¢ = O(Mge) (36)

.~ . o o 1 o . 2 -
St fmixe + dp PmixlaUp + 3 P = R—eaﬁ </,L (8,3 O + 9, g — éaaﬁay uy)) + O(Mge).

(37)

Assuming the Mach numbég is on the order oé?, a > 0 the consistency with continuity
and momentum equations of LMNA is proven. Moreover, macrodynamical equations of t
LBGK scheme Eqgs. (36), (37) approximate continuity and momentum equations of LMN
with the asymptotical accuracy ef whene — 0, Mg ~ .

Usually in the numerical simulations with the LBGK scheme one uses the following ord
of small but finitee and Mg numbers:Mq ~ € ~0.1. In this case the previous asymptotic
estimation of accuracy is not sufficient as far as in some regions of the flow (as, for exam|
in the zones of vortex shedding) the space deviations of mixture flux on the characteri:
length can be two orders smaller than the reference value. One way to ensure the se
order accuracy i of the scheme in the whole computational domain is the decreasing
global Mach numbekgy which leads in the inverse increasing of the computational time an
loss of the efficiency of the solver. The other way is the use of the following semi-empiric
criteria [P]* ~ O ([ pmixd", [P1%), [omixu]* ~ [omixu]S. Here notationsk ]!, [F]S are used for
the local deviations of variablE on the characteristic time and length accordingly. These
estimations are based on the assumption that in the absence of acoustic the local t
deviations of the dynamic part of the pressure and mixture flux are on the order of th
local space deviations. These criteria can be easily checked during the computations. \
these estimations one can obtain the following over-estimatiorPfiSiffom the momentum
equation P]® ~ [pmixu]® which ensures that “wrong” terms in the continuity equation are
on the order o&?[ pmixu]® and Egs. (36), (37) approximate the continuity and momentun
equation of LMNA with second order accuracyen
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